Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech.(CE) (2011 Onwards) (Sem.-6) DESIGN OF CONCRETE STRUCTURES-II

Subject Code: BTCE-601 Paper ID: [A2288]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
- 4. Any missing data may be assumed.

SECTION-A

1. Write briefly:

- a) What are the various cases of failures of combined footing?
- b) What is the factor of safety due to sliding of the retaining wall?
- c) When a shear key is provided in a reinforced concrete retaining wall?
- d) In which cases 8-legged stirrups are provided in a combined footing?
- e) What is the shape of pressure distribution diagram beneath the footing when the footing is the symmetrically loaded?
- f) In which conditions strap footing are provided?
- g) What is minimum cover provided in a trapezoidal footing?
- h) What is the shape of shear stress diagram in a reinforced concrete beam section?
- i) What is the maximum spacing of vertical stirrups in rectangular beams?
- j) What are the various forces which are considered r for designing domes?

SECTION B

- 2. Design a combined column footing with a strap beam for two RC columns 300 mm × 300 mm size spaced 4 m apart and each supporting a factored axial load of 750 kN. Assume BC of soil as 225 kN/sq.m.. Use M20 grade concrete and Fe415 grade steel.
- 3. Design a footing for a rectangular column 30 cm × 45 cm carrying an axial service load of 1000 kN. The net bearing capacity of the soil is 120 kN/m². Use M20 grade concrete and SAIL-MA350 grade steel.
- 4. Explain the methods of designing vertical stem, toe slab and heel slab of a T-shaped cantilever retaining wall. What will be the changes in the design if counterforts are provided at rectangular interval towards the side of backfill?
- 5. Explain the method of designing a shear key for a retaining wall.
- 6. What are the various structural elements of Intz type tank and what are their design principles?

SECTION-C

- 7. A circular girder of a water tank has a mean diameter of 10 m, and it is supported on six symmetrical placed columns. The uniformly distributed load on the girder is 20 kN/m. Design the critical sections of the girder using M20 grade concrete and Fe415 grade Tor Steel, and sketch the details of reinforcements.
- 8. Design a spherical dome over a circular room of 20 m diameter. The rise of the dome may be taken equal to 1/5 of the diameter. The dome carries a lantern load of 30 kN attached at the circumference of an opening of 2 m diameter at the apex. Take live load due to wind etc. as 1.5 kN/m² of the surface area of the dome, Use M20 Concrete and Fe415 steel.
- 9. Design a semi circular beam supported on three columns equally spaced. The centre of column is on a curve of diameter 8 m. The super imposed load on beam per meter length is 20 kN. Adopt M20 grade and Fe450 T or steel.